JavaScript e WebGL
Questo articolo spiega JavaScript e WebGL.
YouTube Video
javascript-web-gl-texture.js
1// Get WebGL context
2const canvas = document.getElementById("glCanvas");
3const gl = canvas.getContext("webgl");
4if (!gl) {
5 alert("WebGL is not supported by your browser.");
6}
7
8// Vertex shader program
9const vsSource = `
10 attribute vec4 aVertexPosition;
11 attribute vec2 aTextureCoord;
12 varying highp vec2 vTextureCoord;
13 void main(void) {
14 gl_Position = aVertexPosition;
15 vTextureCoord = aTextureCoord;
16 }
17`;
18
19// Fragment shader program
20const fsSource = `
21 varying highp vec2 vTextureCoord;
22 uniform sampler2D uSampler;
23 void main(void) {
24 gl_FragColor = texture2D(uSampler, vTextureCoord);
25 }
26`;
27
28// Compile shader
29function loadShader(type, source) {
30 const shader = gl.createShader(type);
31 gl.shaderSource(shader, source);
32 gl.compileShader(shader);
33 if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) {
34 console.error("Shader compile failed: ", gl.getShaderInfoLog(shader));
35 gl.deleteShader(shader);
36 return null;
37 }
38 return shader;
39}
40
41// Initialize shader program
42function initShaderProgram(vsSource, fsSource) {
43 const vertexShader = loadShader(gl.VERTEX_SHADER, vsSource);
44 const fragmentShader = loadShader(gl.FRAGMENT_SHADER, fsSource);
45 const shaderProgram = gl.createProgram();
46 gl.attachShader(shaderProgram, vertexShader);
47 gl.attachShader(shaderProgram, fragmentShader);
48 gl.linkProgram(shaderProgram);
49 if (!gl.getProgramParameter(shaderProgram, gl.LINK_STATUS)) {
50 console.error("Unable to initialize the shader program: " + gl.getProgramInfoLog(shaderProgram));
51 return null;
52 }
53 return shaderProgram;
54}
55
56const shaderProgram = initShaderProgram(vsSource, fsSource);
57const programInfo = {
58 program: shaderProgram,
59 attribLocations: {
60 vertexPosition: gl.getAttribLocation(shaderProgram, "aVertexPosition"),
61 textureCoord: gl.getAttribLocation(shaderProgram, "aTextureCoord"),
62 },
63 uniformLocations: {
64 uSampler: gl.getUniformLocation(shaderProgram, "uSampler"),
65 },
66};
67
68// Define positions and texture coordinates
69const positions = new Float32Array([
70 -1.0, 1.0,
71 1.0, 1.0,
72 -1.0, -1.0,
73 1.0, -1.0,
74]);
75
76const textureCoordinates = new Float32Array([
77 0.0, 0.0,
78 1.0, 0.0,
79 0.0, 1.0,
80 1.0, 1.0,
81]);
82
83// Create position buffer
84const positionBuffer = gl.createBuffer();
85gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer);
86gl.bufferData(gl.ARRAY_BUFFER, positions, gl.STATIC_DRAW);
87
88// Create texture coordinate buffer
89const texCoordBuffer = gl.createBuffer();
90gl.bindBuffer(gl.ARRAY_BUFFER, texCoordBuffer);
91gl.bufferData(gl.ARRAY_BUFFER, textureCoordinates, gl.STATIC_DRAW);
92
93// Create and load texture
94const texture = gl.createTexture();
95gl.bindTexture(gl.TEXTURE_2D, texture);
96
97const image = new Image();
98image.src = "texture.png";
99image.onload = () => {
100 gl.bindTexture(gl.TEXTURE_2D, texture);
101 gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, image);
102 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
103 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
104 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);
105 drawScene();
106};
107
108// Draw function
109function drawScene() {
110 gl.clearColor(0.0, 0.0, 0.0, 1.0); // Clear to black
111 gl.clear(gl.COLOR_BUFFER_BIT);
112
113 gl.useProgram(programInfo.program);
114
115 // Bind vertex position buffer
116 gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer);
117 gl.vertexAttribPointer(programInfo.attribLocations.vertexPosition, 2, gl.FLOAT, false, 0, 0);
118 gl.enableVertexAttribArray(programInfo.attribLocations.vertexPosition);
119
120 // Bind texture coordinate buffer
121 gl.bindBuffer(gl.ARRAY_BUFFER, texCoordBuffer);
122 gl.vertexAttribPointer(programInfo.attribLocations.textureCoord, 2, gl.FLOAT, false, 0, 0);
123 gl.enableVertexAttribArray(programInfo.attribLocations.textureCoord);
124
125 // Bind texture
126 gl.activeTexture(gl.TEXTURE0);
127 gl.bindTexture(gl.TEXTURE_2D, texture);
128 gl.uniform1i(programInfo.uniformLocations.uSampler, 0);
129
130 // Draw rectangle
131 gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);
132}javascript-web-gl-lighting.js
1// Get the WebGL context
2const canvas = document.getElementById("glCanvas");
3const gl = canvas.getContext("webgl");
4if (!gl) {
5 alert("WebGL not supported");
6 throw new Error("WebGL not supported");
7}
8
9// Vertex shader
10const vertexShaderSource = `
11attribute vec3 aPosition;
12attribute vec3 aNormal;
13uniform mat4 uModelViewMatrix;
14uniform mat4 uProjectionMatrix;
15varying vec3 vNormal;
16
17void main(void) {
18 gl_Position = uProjectionMatrix * uModelViewMatrix * vec4(aPosition, 1.0);
19 vNormal = aNormal;
20}
21`;
22
23// Fragment shader (with lighting)
24const fragmentShaderSourceWithLighting = `
25precision mediump float;
26uniform vec3 uLightingDirection;
27uniform vec4 uLightColor;
28varying vec3 vNormal;
29
30void main(void) {
31 vec3 lightDirection = normalize(uLightingDirection);
32 float directionalLightWeighting = max(dot(normalize(vNormal), lightDirection), 0.0);
33 gl_FragColor = uLightColor * directionalLightWeighting;
34}
35`;
36
37// Shader creation helper
38function createShader(gl, type, source) {
39 const shader = gl.createShader(type);
40 gl.shaderSource(shader, source);
41 gl.compileShader(shader);
42 if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) {
43 console.error("Shader compile error:", gl.getShaderInfoLog(shader));
44 gl.deleteShader(shader);
45 return null;
46 }
47 return shader;
48}
49
50// Create program
51function createProgram(gl, vs, fs) {
52 const program = gl.createProgram();
53 gl.attachShader(program, vs);
54 gl.attachShader(program, fs);
55 gl.linkProgram(program);
56 if (!gl.getProgramParameter(program, gl.LINK_STATUS)) {
57 console.error("Program link error:", gl.getProgramInfoLog(program));
58 return null;
59 }
60 return program;
61}
62
63const vs = createShader(gl, gl.VERTEX_SHADER, vertexShaderSource);
64const fs = createShader(gl, gl.FRAGMENT_SHADER, fragmentShaderSourceWithLighting);
65const program = createProgram(gl, vs, fs);
66gl.useProgram(program);
67
68// Cube data
69const vertices = new Float32Array([
70 -1,-1,1, 1,-1,1, 1,1,1, -1,1,1, // Front
71 -1,-1,-1, -1,1,-1, 1,1,-1, 1,-1,-1, // Back
72 -1,1,-1, -1,1,1, 1,1,1, 1,1,-1, // Top
73 -1,-1,-1, 1,-1,-1, 1,-1,1, -1,-1,1, // Bottom
74 1,-1,-1, 1,1,-1, 1,1,1, 1,-1,1, // Right
75 -1,-1,-1, -1,-1,1, -1,1,1, -1,1,-1 // Left
76]);
77
78const normals = new Float32Array([
79 0,0,1, 0,0,1, 0,0,1, 0,0,1,
80 0,0,-1, 0,0,-1, 0,0,-1, 0,0,-1,
81 0,1,0, 0,1,0, 0,1,0, 0,1,0,
82 0,-1,0, 0,-1,0, 0,-1,0, 0,-1,0,
83 1,0,0, 1,0,0, 1,0,0, 1,0,0,
84 -1,0,0, -1,0,0, -1,0,0, -1,0,0
85]);
86
87const indices = new Uint16Array([
88 0,1,2, 0,2,3,
89 4,5,6, 4,6,7,
90 8,9,10, 8,10,11,
91 12,13,14, 12,14,15,
92 16,17,18, 16,18,19,
93 20,21,22, 20,22,23
94]);
95
96// Buffers
97const vertexBuffer = gl.createBuffer();
98gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);
99gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW);
100
101const normalBuffer = gl.createBuffer();
102gl.bindBuffer(gl.ARRAY_BUFFER, normalBuffer);
103gl.bufferData(gl.ARRAY_BUFFER, normals, gl.STATIC_DRAW);
104
105const indexBuffer = gl.createBuffer();
106gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer);
107gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, indices, gl.STATIC_DRAW);
108
109// Attribute locations
110const aPosition = gl.getAttribLocation(program, "aPosition");
111const aNormal = gl.getAttribLocation(program, "aNormal");
112
113// Uniforms
114const uProjectionMatrix = gl.getUniformLocation(program, "uProjectionMatrix");
115const uModelViewMatrix = gl.getUniformLocation(program, "uModelViewMatrix");
116const uLightingDirection = gl.getUniformLocation(program, "uLightingDirection");
117const uLightColor = gl.getUniformLocation(program, "uLightColor");
118
119// Projection
120function perspectiveMatrix(fov, aspect, near, far) {
121 const f = 1.0 / Math.tan((fov / 2) * Math.PI / 180);
122 return new Float32Array([
123 f/aspect,0,0,0,
124 0,f,0,0,
125 0,0,(far+near)/(near-far),-1,
126 0,0,(2*far*near)/(near-far),0
127 ]);
128}
129
130function identityMatrix() {
131 return new Float32Array([1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1]);
132}
133
134gl.uniformMatrix4fv(uProjectionMatrix, false, perspectiveMatrix(45, canvas.width / canvas.height, 0.1, 100.0));
135gl.uniform3fv(uLightingDirection, [0.5, 0.7, 1.0]);
136gl.uniform4fv(uLightColor, [1.0, 1.0, 1.0, 1.0]);
137
138// Clear settings
139gl.clearColor(0.1, 0.1, 0.1, 1.0);
140gl.enable(gl.DEPTH_TEST);
141
142// Draw loop
143let angle = 0;
144function draw() {
145 gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
146
147 // Bind position buffer
148 gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);
149 gl.vertexAttribPointer(aPosition, 3, gl.FLOAT, false, 0, 0);
150 gl.enableVertexAttribArray(aPosition);
151
152 // Bind normal buffer
153 gl.bindBuffer(gl.ARRAY_BUFFER, normalBuffer);
154 gl.vertexAttribPointer(aNormal, 3, gl.FLOAT, false, 0, 0);
155 gl.enableVertexAttribArray(aNormal);
156
157 // Compute rotation
158 const mv = identityMatrix();
159 mv[0] = Math.cos(angle);
160 mv[2] = Math.sin(angle);
161 mv[8] = -Math.sin(angle);
162 mv[10] = Math.cos(angle);
163 mv[14] = -6.0;
164 gl.uniformMatrix4fv(uModelViewMatrix, false, mv);
165
166 // Draw
167 gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer);
168 gl.drawElements(gl.TRIANGLES, indices.length, gl.UNSIGNED_SHORT, 0);
169
170 angle += 0.01;
171 requestAnimationFrame(draw);
172}
173
174draw();javascript-web-gl.html
1<!DOCTYPE html>
2<html lang="en">
3<head>
4 <meta charset="UTF-8">
5 <title>JavaScript & HTML</title>
6 <style>
7 * {
8 box-sizing: border-box;
9 }
10
11 body {
12 margin: 0;
13 padding: 1em;
14 padding-bottom: 10em;
15 font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
16 background-color: #f7f9fc;
17 color: #333;
18 line-height: 1.6;
19 }
20
21 .container {
22 max-width: 800px;
23 margin: 0 auto;
24 padding: 1em;
25 background-color: #ffffff;
26 border: 1px solid #ccc;
27 border-radius: 10px;
28 box-shadow: 0 4px 12px rgba(0, 0, 0, 0.05);
29 }
30
31 .container-flex {
32 display: flex;
33 flex-wrap: wrap;
34 gap: 2em;
35 max-width: 1000px;
36 margin: 0 auto;
37 padding: 1em;
38 background-color: #ffffff;
39 border: 1px solid #ccc;
40 border-radius: 10px;
41 box-shadow: 0 4px 12px rgba(0, 0, 0, 0.05);
42 }
43
44 .left-column, .right-column {
45 flex: 1 1 200px;
46 min-width: 200px;
47 }
48
49 h1, h2 {
50 font-size: 1.2rem;
51 color: #007bff;
52 margin-top: 0.5em;
53 margin-bottom: 0.5em;
54 border-left: 5px solid #007bff;
55 padding-left: 0.6em;
56 background-color: #e9f2ff;
57 }
58
59 button {
60 display: inline;
61 margin: 0.25em;
62 padding: 0.75em 1.5em;
63 font-size: 1rem;
64 background-color: #007bff;
65 color: white;
66 border: none;
67 border-radius: 6px;
68 cursor: pointer;
69 transition: background-color 0.3s ease;
70 }
71
72 button:hover {
73 background-color: #0056b3;
74 }
75
76 #output {
77 margin-top: 1em;
78 background-color: #1e1e1e;
79 color: #0f0;
80 padding: 1em;
81 border-radius: 8px;
82 min-height: 200px;
83 font-family: Consolas, monospace;
84 font-size: 0.95rem;
85 overflow-y: auto;
86 white-space: pre-wrap;
87 }
88
89 .highlight {
90 outline: 3px solid #ffc107; /* yellow border */
91 background-color: #fff8e1; /* soft yellow background */
92 transition: background-color 0.3s ease, outline 0.3s ease;
93 }
94
95 .active {
96 background-color: #28a745; /* green background */
97 color: #fff;
98 box-shadow: 0 0 10px rgba(40, 167, 69, 0.5);
99 transition: background-color 0.3s ease, box-shadow 0.3s ease;
100 }
101 </style>
102</head>
103<body>
104 <div class="container">
105 <h1>JavaScript Console</h1>
106 <button id="executeBtn">Execute</button>
107 <button id="executeTextureBtn">Execute Texture</button>
108 <button id="executeLightingBtn">Execute Lighting</button>
109 <div id="output"></div>
110 </div>
111 <div class="container">
112 <h1>WebGL Canvas</h1>
113 <canvas id="glCanvas"></canvas>
114 </div>
115
116 <script>
117 // Override console.log to display messages in the #output element
118 (function () {
119 // Override console.log
120 const originalLog = console.log;
121 console.log = function (...args) {
122 originalLog.apply(console, args);
123 const message = document.createElement('div');
124 message.textContent = args.map(String).join(' ');
125 output.appendChild(message);
126 };
127
128 // Override console.error
129 const originalError = console.error;
130 console.error = function (...args) {
131 originalError.apply(console, args);
132 const message = document.createElement('div');
133 message.textContent = args.map(String).join(' ');
134 message.style.color = 'red'; // Color error messages red
135 output.appendChild(message);
136 };
137 })();
138
139 document.getElementById('executeBtn').addEventListener('click', () => {
140 // Prevent multiple loads
141 if (document.getElementById('externalScript')) return;
142
143 const script = document.createElement('script');
144 script.src = 'javascript-web-gl.js';
145 script.id = 'externalScript';
146 document.body.appendChild(script);
147 });
148
149 document.getElementById('executeTextureBtn').addEventListener('click', () => {
150 // Prevent multiple loads
151 if (document.getElementById('externalScript')) return;
152
153 const script = document.createElement('script');
154 script.src = 'javascript-web-gl-texture.js';
155 script.id = 'externalScript';
156 document.body.appendChild(script);
157 });
158
159 document.getElementById('executeLightingBtn').addEventListener('click', () => {
160 // Prevent multiple loads
161 if (document.getElementById('externalScript')) return;
162
163 const script = document.createElement('script');
164 script.src = 'javascript-web-gl-lighting.js';
165 script.id = 'externalScript';
166 document.body.appendChild(script);
167 });
168 </script>
169</body>
170</html>JavaScript e WebGL
JavaScript e WebGL sono strumenti potenti nello sviluppo web moderno per offrire grafica 3D interattiva e di alta qualità nel browser. Usando WebGL, puoi sfruttare direttamente la GPU per un rendering efficiente e creare applicazioni web espressive come giochi, visualizzazioni di dati e applicazioni VR/AR.
Cos'è WebGL?
WebGL (Web Graphics Library) è un'API grafica di basso livello fornita come parte di HTML5, utilizzata per eseguire il rendering 3D direttamente nel browser. Si basa sulla specifica OpenGL ES 2.0 e controlla la GPU da JavaScript. Usando WebGL, puoi visualizzare grafica 3D avanzata in quasi tutti i browser moderni senza la necessità di plugin speciali.
Fondamenti di WebGL
Per eseguire il rendering con WebGL, è necessario comprendere diversi concetti chiave. Come altre API grafiche (come OpenGL e DirectX), WebGL elabora i dati attraverso una pipeline grafica e genera immagini sulla GPU.
Ottenere il contesto
WebGL esegue il rendering utilizzando l'elemento HTML5 <canvas>. In JavaScript, devi prima ottenere il contesto WebGL.
1const canvas = document.getElementById("glCanvas");
2const gl = canvas.getContext("webgl");
3if (!gl) {
4 console.error("WebGL not supported, falling back on experimental-webgl");
5 gl = canvas.getContext("experimental-webgl");
6}
7if (!gl) {
8 alert("Your browser does not support WebGL");
9}- Ottieni un contesto WebGL dall'elemento
<canvas>. Questo ti consente di controllare il rendering della GPU tramite JavaScript.
Definire gli shader
Per effettuare il rendering con WebGL, si usano due tipi di shader: un vertex shader e un fragment shader. I vertex shader calcolano la posizione di ogni vertice di un oggetto, mentre i fragment shader calcolano il colore di ogni pixel. Questi shader sono programmi che vengono eseguiti sulla GPU. Gli shader sono scritti in un linguaggio chiamato GLSL.
1const vertexShaderSource = `
2attribute vec4 aVertexPosition;
3void main(void) {
4 gl_Position = aVertexPosition;
5}`;
6const fragmentShaderSource = `
7void main(void) {
8 gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0); // Red color
9}`;- Il vertex shader elabora le posizioni dei vertici, e il fragment shader imposta il colore per pixel. Qui generiamo il rosso.
Compilare e collegare gli shader
Per incorporare il codice sorgente degli shader in un programma WebGL, compila gli shader e collegali per creare un programma.
1function createShader(gl, type, source) {
2 const shader = gl.createShader(type);
3 gl.shaderSource(shader, source);
4 gl.compileShader(shader);
5 if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) {
6 console.error("An error occurred compiling the shaders:", gl.getShaderInfoLog(shader));
7 gl.deleteShader(shader);
8 return null;
9 }
10 return shader;
11}
12
13const vertexShader = createShader(gl, gl.VERTEX_SHADER, vertexShaderSource);
14const fragmentShader = createShader(gl, gl.FRAGMENT_SHADER, fragmentShaderSource);
15
16const shaderProgram = gl.createProgram();
17gl.attachShader(shaderProgram, vertexShader);
18gl.attachShader(shaderProgram, fragmentShader);
19gl.linkProgram(shaderProgram);
20if (!gl.getProgramParameter(shaderProgram, gl.LINK_STATUS)) {
21 console.error("Unable to initialize the shader program:", gl.getProgramInfoLog(shaderProgram));
22}- Compila ciascun shader e collegali in un programma. Questo costruisce una pipeline di rendering eseguibile sulla GPU.
Preparare buffer e dati dei vertici
Successivamente, prepara i dati di geometria da disegnare e inviali a un buffer WebGL. Questi dati includono le posizioni dei vertici, i colori, le coordinate delle texture e così via.
1const vertices = new Float32Array([
2 -1.0, -1.0,
3 1.0, -1.0,
4 1.0, 1.0,
5 -1.0, 1.0,
6]);
7
8const vertexBuffer = gl.createBuffer();
9gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);
10gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW);- Definisci le coordinate dei vertici di un rettangolo e caricale in un buffer della GPU.
STATIC_DRAWindica che i dati non cambiano frequentemente.
Processo di rendering
Infine, fai eseguire a WebGL il rendering effettivo utilizzando gli shader e i dati. Configura correttamente la pipeline di rendering di WebGL ed emetti comandi di disegno alla GPU. Qui puliamo lo sfondo in nero e disegniamo un rettangolo rosso utilizzando i dati dei vertici definiti e il programma shader.
1gl.clearColor(0.0, 0.0, 0.0, 1.0); // Clear to black
2gl.clear(gl.COLOR_BUFFER_BIT);
3
4// Use the shader program
5gl.useProgram(shaderProgram);
6
7// Bind vertex buffer
8const positionAttributeLocation = gl.getAttribLocation(shaderProgram, "aVertexPosition");
9gl.enableVertexAttribArray(positionAttributeLocation);
10gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);
11gl.vertexAttribPointer(positionAttributeLocation, 2, gl.FLOAT, false, 0, 0);
12
13// Draw
14gl.drawArrays(gl.TRIANGLE_FAN, 0, 4);- In questo codice, configuriamo la pipeline di rendering WebGL ed eseguiamo il rendering di un rettangolo. Inizializzando lo schermo con gl.clear() e inviando comandi di disegno alla GPU con gl.drawArrays(), i dati elaborati dagli shader vengono effettivamente visualizzati sullo schermo.
Funzionalità avanzate di WebGL
Con WebGL, puoi utilizzare diverse funzionalità avanzate oltre al rendering di base. Qui presentiamo alcune di queste funzionalità.
Mappatura delle texture
WebGL supporta la mappatura delle texture, che consente di applicare immagini o motivi agli oggetti 3D. Questo ti permette di conferire agli oggetti un aspetto più complesso e realistico rispetto a colori semplici.
1/* Fragment of source code */
2const texture = gl.createTexture();
3gl.bindTexture(gl.TEXTURE_2D, texture);
4
5// Load an image as the texture
6const image = new Image();
7image.src = "texture.png";
8image.onload = () => {
9 gl.bindTexture(gl.TEXTURE_2D, texture);
10 gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, image);
11
12 // Set texture parameters
13 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
14 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
15 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);
16
17 // Draw the scene again with the texture applied
18 drawScene();
19};- Carica le immagini come texture e applicale alle superfici degli oggetti per ottenere un aspetto più realistico.
Illuminazione e ombreggiatura
Puoi utilizzare modelli di ombreggiatura per applicare effetti di illuminazione realistici agli oggetti 3D. Calcola come la superficie di un oggetto riflette la luce basandoti su diversi modelli di ombreggiatura come l'ombreggiatura Phong e Gouraud.
1/* Fragment of source code */
2const fragmentShaderSourceWithLighting = `
3precision mediump float;
4uniform vec3 uLightingDirection;
5uniform vec4 uLightColor;
6void main(void) {
7 vec3 lightDirection = normalize(uLightingDirection);
8 float directionalLightWeighting = max(dot(vNormal, lightDirection), 0.0);
9 gl_FragColor = uLightColor * directionalLightWeighting;
10}`;- Calcola la luminosità in base all'angolo tra la direzione della luce e le normali. Questa è la base di tecniche di ombreggiatura come i modelli Phong e Gouraud.
Ottimizzazione e prestazioni
Poiché WebGL opera direttamente sulla GPU, l'ottimizzazione delle prestazioni è cruciale. L'utilizzo di grandi quantità di dati di vertici o shader complessi può portare a una diminuzione delle prestazioni. Di seguito sono riportati approcci comuni per l'ottimizzazione delle prestazioni.
- Uso efficiente dei buffer di vertici Invece di aggiornare frequentemente i buffer di vertici, riutilizza il più possibile i buffer una volta creati.
- Regolazione della frequenza dei fotogrammi
Usa
requestAnimationFrameper controllare il rendering dell'animazione e mantenere una frequenza dei fotogrammi efficiente. - Eliminazione per occlusione Una tecnica che omette il rendering degli oggetti che non rientrano nel campo visivo. Questo può ridurre il carico di rendering.
1function render() {
2 gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
3
4 // Logic to update objects in the scene
5
6 // Use requestAnimationFrame for smooth rendering
7 requestAnimationFrame(render);
8}
9
10render();- Controlla il ciclo di rendering con
requestAnimationFramee aggiorna in modo efficiente i frame in sincronia con i tempi di rendering del browser.
Riepilogo
Combinando JavaScript e WebGL, è possibile ottenere grafica 3D avanzata che opera in tempo reale nel browser. WebGL include molti elementi, dai concetti di base come shader e gestione dei buffer, all'applicazione di texture e ottimizzazione delle prestazioni, ma utilizzandoli efficacemente, puoi sviluppare applicazioni interattive e visivamente ricche.
Puoi seguire l'articolo sopra utilizzando Visual Studio Code sul nostro canale YouTube. Controlla anche il nostro canale YouTube.